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Root Loci Design Using Dickson’s Technique
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Abstract—Traditional techniques for determining the root loci
were developed by Evans. Given the characteristic equation {1 +
( ) ( ) = 0}, Evans root locus method requires the magni-

tude of ( ) ( ) to be equal to minus one and is well established
for determining the pole locations as the system gains are changed.
In this paper, nontraditional techniques for developing the root
loci of control systems are introduced. Illustrations are developed
by using a method for plotting the root loci that involves setting
the real and the imaginary portions of the characteristic equation
equal to zero. Setting the real and imaginary parts of the character-
istic equation equal to zero arises from work in the theory of equa-
tions by Dickson. Application of this technique allows adjustment
of the gain, to establish the system requirements, and introduces
collateral equations subject to unique geometric interpretation.

Index Terms—Characteristic equation, control systems, root
locus techniques, theory of equations.

I. INTRODUCTION

A N IMPORTANT topic of linear control systems is the in-
vestigation of the trajectories of the roots of the character-

istic equation. Given such an equation, withas a variable,
an engineer wanting to see the locus might pick a value for

, then find and plot the roots. This process can be repeated,
for different values of , until the desired locus is available
for viewing. In general, this was not a viable option when the
root locus principles were first introduced by Evans [1], [2]. His
work enabled the engineer to bypass such a cumbersome proce-
dure and quickly obtain a sketch of the root locus. The Evans’
principles are still useful for that purpose.

Evans’ root loci rules are reviewed in order to demonstrate
construction of the root loci for the characteristic equation of a
typical feedback control system as shown in Fig. 1. The charac-
teristic equation is obtained by setting . The
rules for actually constructing the loci are summarized by Kuo
[4] and presented in Table I.

Engineers readily construct the system’s root loci by using
the theorems developed by Evans; however, the method does
not provide an analytical technique for determining the required
gains. By following the techniques of Dickson [3], equations are
developed that can lead to a different understanding of how the
system behaves. These equations can be used to set the value of
gain to meet the requirements for the system and also provide
algebraic expressions for the loci.

The first goal of this paper is to review the Evans root locus
method. Then the second goal is to introduce the Dickson tech-
nique and show how it can be utilized as a supplemental tool for
constructing the desired loci. Also applications where the gain
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Fig. 1. Controlled system.

can be precisely determined will be illustrated and the geometric
nature of the collateral equations will be discussed.

II. EVAN’S METHOD—THE TRADITIONAL APPROACH

The nine theorems in Table I summarize the traditional ap-
proach presented by Evans. By way of demonstration, a problem
discussed in Kuo [4] is presented.

Example 1: Considering and ,
the characteristic equation becomes

(1)

From Theorem 1, in Table I, when , the two roots of the
equation are and . These two points are the poles
shown in Fig. 2.

From the given information

(2)

and

(3)

Given (1) it is apparent from Theorem 2, in Table I, that when
equals or then must equal or , respectively.

Thus, the system poles are located at and .
From Theorem 3, the order of the polynomial in (1) is two;

therefore the number of branches of the root loci (RL) is also
two.

The RL plot is determined as the system gainis varied from
0 to . The complimentary root loci (CRL) plot is determined
as the gain is varied from 0 to . The combination of the RL
and the CRL make up the total or complete root loci.

From Theorem 5, the angles of the asymptotes for the RL
portion are at 90and 270. The CRL angles are calculated to
be 0 and 180.

From Theorem 6, the intersection of the asymptotes is deter-
mined to be .

Theorem 7 indicates that the real axis between the two poles
is part of the RL plot and the remainder of the real axis belongs
to the CRL plot.
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TABLE I
PROPERTIES OF THECOMPLETE ROOT LOCI [4]
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Fig. 2. Pole zero plot of Example 1.

To find the breakaway points on the complete root loci, The-
orem 8 is applied. Taking the derivative of with re-
spect to , the following is observed:

or

(4)

The root of (4) is at which indicates that the break-
away point and the intersection of the asymptotes are identical
for this system. To determine the system gain at the breakaway
point, is inserted into Equation (1) which yields

.
Applying the Routh–Hurwitz criterion as suggested in The-

orem 9, it is found that is required to maintain stability.
A negative system gain will cause the roots to cross into the
right-half plane, thus causing instability.

With the results from the nine Theorems, the root loci for
the system can be constructed. Plots of the loci are displayed
in Fig. 3 for RL and Fig. 4 for CRL.

III. T HE DICKSON METHOD

Using Evan’s method, the characteristic equation,
, is set equal to zero using the fol-

lowing conditions:

and

The system shown in Fig. 1 is to be considered. If the system
transfer function, ,
is simplified to a ratio of two polynomials, i.e.,

then the polynomial closed-loop characteristic equation can be
defined as

Fig. 3. Root loci plot of Example 1.

For this case, the root locus conditions are established by re-
quiring

and

which, for , can be written as follows:

(5)

and

(6)

This is the contribution of Dickson [3]. Equation (5) is denoted
the real condition and (6) the imaginary condition.

Referring to Example 1

(7)

or

(8)

and

(9)

The Imaginary Condition applied to (9) results in the following:

(10)

This produces or . Plotting this outcome
reveals the complete root loci of the system. Notice thatequal
to zero indicates that part of the RL and part of the CRL locus
encompasses the axis (this is the situation for all systems).
The other result from (10), , indicates that the loci
occupy the line one-half a unit to the left of theaxis. The
results can be seen in Fig. 3.

Examining Fig. 3, the RL, from the Evans approach, it is
known that the poles are located at (0,0) and (1,0) when the
system gain . The loci are bound between the two poles
and the value as varies from 0 to . Fig. 4, indi-
cates that the CRL occupies the remainder of the real axis.

Applying the real condition to (9)

(11)
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Fig. 4. Complimentary root locus plot of Example 1.

Fig. 5. Pole zero plot of Example 1 with system gainK = 0:4229.

In Equation (11), it will be noticed that the system gain can be
determined from the values ofand . Thus the necessary gain,

, can be calculated, to place the roots where desired on the
loci. If a system pole is to be located at the point (0.5, 0.4158),
inserting these values into (11) will produce a system gain of
0.4229. The pole zero plot of the system with a gain of 0.4229
is illustrated in Fig. 5. One pole is located at (0.5, ),
while the other is at the point (0.5, ). So, the system
poles can be placed on the root locus by determining the proper
system gain from (11).

Equations (10) and (11) are derived using Dickson’s tech-
nique to obtain an imaginary and a real condition. Evan’s
approach evolves from setting . Both methods
(Evans and Dickson) determine the proper root locus. The
Dickson approach also exploits a calculation for the gain
to place the system poles at the desired operating point.

The implementation of the root locus method could involve
picking , then finding and plotting the roots of the character-
istic equation for the system asvaries. Equation (10) indicates
that if this is completed for all , then the plot will be on the

real axis for , or the plot will be on the line
for values of other than zero. The analytical results illustrated
by (10) are duplicated by developing the root locus plot. Yet,
when using both (10) and (11) the designer has more options to
consider than are available when using the root locus rules of
Evans.

Example 2: Consider another system discussed by Kuo [4]
and Ogata [5], where

and (12)

The closed-loop transfer function can be written as

where

(13)

Inserting yields

(14)

Expanding terms of (14) into real and imaginary parts results in

(15)

Applying the imaginary condition, the following is obtained
from (15):

(16)

Once again is a solution (the loci will cover the axis).
And from the factor in parenthesis in (16), the user can obtain

(17)

or

or

(18)

Equation (18) is in the form of a hyperbola centered at (1,0).
This is the root loci equation for the system; the plots can be
seen in Figs. 6 and 7. Fig. 6 is the RL plot while Fig. 7 shows
the CRL plot.

From the real condition, applied to (15)

(19)

We now have a system equation in terms of gain,and , and
can once again place the poles according to predetermined value
for and . The breakaway points (BPs) can also be determined
for the RL and CRL plots. Setting in (18) produces

. By inserting these values
into (19), the gain of the system at these points is determined.
At the point ( 0.4226, 0), the system gain is .
Since the gain is positive, this point corresponds to the RL plot.
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Fig. 6. Root locus plot of example 2.

Fig. 7. Complimentary root locus plot of example 2.

At the point ( ) on the CRL plot, the system gain is
.

The critical values of can be found from the application of
Routh’s rule (i.e., for stability). An examination of
the characteristic equation shows thatmust be greater than
zero, since all the coefficients must be positive; setting
and in (19), returns the value for the critical frequency
of . The values, and , are also
found from (17) and (19) by setting .

Once again, by developing the system equations using
Dickson’s technique, the authors are able to determine the
plot of the complete root loci. They are also able to determine
other important system parameters at points of interest on the
plot. This determination can be illustrated by calculating an
operating point such that the second order damping ratio () is
equal to one-half if . Then from Equation (17) the
operating point is located at and
while the gain at the operating point, , is calculated from

(19) to be 1.003 70. Other operating points may be implemented
using the same technique.

Example 3: For this example
and . The closed-loop transfer function is

(20)
Rearranging the terms of (20)

where . Inserting
and reducing yields

(21)
Applying the imaginary condition to (21)

(22)

where once again is equal to zero or

(23)

Solving for in (23) produces

(24)

Applying the real condition to (21)

or

or

or

(25)

From before

or

Inserting this into (25) and completing the square results in

(26)

This is an equation of a circle centered at and
with a radius of and is the system equation that describes the
RL. The RL plot is shown in Fig. 8, and the CRL plot in Fig. 9.

With (25) and (26), the breakaway points and the gain of the
system at these points can be determined. Inserting into
(26) produces the breakaway points and .
At the breakaway point , is determined to be

by examining (24). When , is found to be
5.46.

The critical values of can be found from the application of
Routh’s rule (i.e., and for stability).
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Fig. 8. Root loci plot of example 3.

Fig. 9. Complimentary root loci plot of example 3.

An examination of the characteristic equation shows that these
conditions are necessary to keep the coefficients positive. The
critical value of can also be found by evaluating the real con-
dition, knowing that at the critical point. If the
operating point is to be located with a damping ratio equal to
one-half, then this is achieved with a positive feedback gain of

, and .
Example 4: A higher order example by Ogata is examined

[5] where:

and

such that

(27)

For this transfer function, the real part of is calculated
to be

(28)

Fig. 10. Root loci plot of example 4.

Fig. 11. Complimentary root loci of example 4.

And the imaginary part is found as

(29)
Equations (28) and (29) represent higher order relationships

than we have encountered previously; reduction into identifiable
geometric curves may not be possible. The root locus plots, RL
is shown in Fig. 10 and CRL in Fig. 11, readily show the general
shape and the asymptotes for these curves. The real and imagi-
nary conditions applied to the above equations will still provide
crucial information needed for analysis of the system and also
for establishing the gain, .

Applying the imaginary condition to (29)

(30)

where it is noted that is a solution of the total root locus as
expected from the previous examples, and the breakaway point
can be found from the enclosed expression, with , i.e.,
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Noting that the roots of the above equation are at
and at , the breakaway point is recognized to be

at . Knowing the value of at the breakaway
point, the value of the gain, at that point is easily calculated
from applying the real condition to (28), and then solving for

, and .
The real condition requires that

(31)
and with and from the
above equation.

The imaginary condition, (30), was utilized to determine the
breakaway point with omega set to zero; it also will provide the
critical frequency when sigma is zero, i.e.,

The real condition, (31), provided the gain at the known break-
away point, . It also will provide the gain, , at the point
of instability when sigma is zero and , i.e.,

Application of the real and imaginary conditions allowed im-
portant points of the root locus plots to be determined. These
equations can also help establish the operating point,and

, and the associated gain, . By selecting a suitable damping
factor, such as , then , and elimination
of from (30) results are found in the following relation:

with solutions for as 2.2312, , or . Since the
value for is expected to be less than the breakaway point of

, then is chosen as the desired value and
is calculated to be 0.6878 from the relation .

Finally, is calculated to be 8.2179 using the above values in
(31).

This example illustrates the application of Dickson’s tech-
nique to a higher order problem, one where the root locus could
not be defined by simple geometric relations. Yet, the funda-
mental equations established through application of the real and
the imaginary conditions are still useful in finding the important
factors required in the design and analysis of the system. Exact
values were found for the points that breakaway from the real
axis, the critical values for oscillation, and the required system
gain to achieve the desired operating point. Only algebraic equa-
tions were involved and the most difficult mathematical opera-
tion performed was finding roots for these equations. The tech-
nique is a valuable compliment to classical root locus analysis.

Example 5: The final example involves a fifth-order system
as defined by (32).

and

(32)

Increasing the number of zeros in increases the complexity
of the problem. Since only algebraic operations are required to
complete an analysis using Dickson’s technique, higher order
systems utilize the same procedures simply using more terms.

Fig. 12. Root loci plot of example 5.

Fig. 13. Complimentary root loci plot of example 5.

To keep track of these terms, the equations used to develop this
example were symbolically derived using Mathcad.

The RL plot for this system is shown in Fig. 12 and the CRL
plot is shown in Fig. 13. Ogata [5] analyses the root locus plot
of this system using MATLAB; MATLAB was also used to gen-
erate the root locus plots for this work.

Knowing the critical values of , the complexity of this
higher order system can be observed. As the gain increases,
the system is stable until the value approaches15.6, where a
region of instability is reached. The system is unstable while
the gain is between 15.6 and 67.5. It is again observed to be
stable while the gain is between 67.5 and 163.5, and finally it
is unstable when the gain is over the 163.5 value. However,
in the range where is anywhere above 15, the system is so
reactive that operation in the vicinity would not be possible;
that is, the dominant poles are either in the right half plane or
so close to the imaginary axis that the damping factor would be
unacceptably small. Thus, the practical range foris greater
than zero, but less than 15.
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The transfer function for the system defined above can be
written as

(33)

Following the previous development, the real and imaginary
parts of are calculated, and the real and imaginary
conditions are applied. From the real condition

(34)

Applying the imaginary condition another equation is derived
as

(35)

It can be observed from the above equation, the expected result,
that , or the real axis, is a solution for the entire root locus.

The breakaway points on the real axis may be found from
(34), and the enclosed portion of (35) with , i.e., from
(34)

(36)

and from (35)

(37)

Solution of the above two equations will yield the breakaway
points, , and the gain, , required to place the system
poles at those breakaway points. Equation (36) may be written
as

(38)
Likewise, (37) may be solved for , i.e.,

(39)

Eliminating from (38) and (39) results in a single polyno-
mial equation.

The roots of this equation will render the breakaway points
of the root locus plot from the real axis. The result of this elim-
ination is shown below as (40)

(40)
with roots at , , , and

. The real roots show the location of the
breakaway points. If is identified as , then the
system gain necessary to place roots at that location,

, can be calculated from Equations (38) or (39). Like-
wise if is identified as , the related gain value
is . The first set of values is encountered

in the development of the standard root locus, and the second is
associated with the complementary root locus.

After the breakaway points have been calculated, the next task
is to calculate the critical values affecting stability. The gain,

, necessary to drive the system poles to the imaginary axis
is an important parameter as well as the critical frequency,.
Naturally, the real part of the pole location is zero at these points.
The first step is to force omega to the point of instability by
setting sigma equal to zero in the defining equations. From (34)
with , (41) is derived as

(41)

Likewise (42) is derived from (35) with , where

(42)

The above two equations may be combined to eliminate. This
is a straightforward algebraic manipulation which results in

(43)

The roots of (43) are , , and
, which identify the critical frequencies that

are labeled , and , respectively. Given the
critical frequencies, the associated gains can be calculated
from (41) or (42); the result of this calculation shows that

, and .
The values for these gains can be verified using Routh’s rule,
and the values of the breakaway points can be found using a
derivative of the characteristic equation. The more traditional
ways require at least as much effort to apply as using Dickson’s
technique, and they lack the precision available for placing the
system operating point.

IV. CONCLUSION

The Dickson technique is useful in allowing the designer to
determine the gain required to place the systems poles and zeros
at some desired location. The breakaway points and the value
of gain at each point can be found by finding the conditions that
exist when . The critical values of gain and frequency, for
stability, can also be found by evaluating the equations at .

For higher order systems, the derived equations become more
complicated and more difficult to visualize. However, the equa-
tions are still valid, especially if two equations are derived (one
that is a function of sigma and omega, and one that is a function
of the gain as well as sigma or omega or both). They are in-
tended to be used in conjunction with a computer program that
generates root locus plots and can be valuable tools to increase
understanding the root loci of a system.
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