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Root Loci Design Using Dickson’s Technigue

Douglas L. Spencer, Lee PhilipSenior Member, IEEEand Barbara PhilippMember, IEEE

Abstract—Traditional techniques for determining the root loci  R(s) K Ge(s) C(s)
were developed by Evans. Given the characteristic equation.{+ > >
G(s)H(s) = 0}, Evans root locus method requires the magni-
tude of G(s) H(s) to be equal to minus one and is well established
for determining the pole locations as the system gains are changed.
In this paper, nontraditional techniques for developing the root
loci of control systems are introduced. lllustrations are developed
by using a method for plotting the root loci that involves setting H(s)
the real and the imaginary portions of the characteristic equation
equalto zero. Setting the real and imaginary parts of the character- B(s)
istic equation equal to zero arises from work in the theory of equa-
tions by Dickson. Application of this technique allows adjustment Fig. 1. Controlled system.
of the gain, to establish the system requirements, and introduces
collateral equations subject to unique geometric interpretation.

can be precisely determined will be illustrated and the geometric

Index Terms—Characteristic equation, control systems, root nature of the collateral equations will be discussed.
locus techniques, theory of equations.

Il. EVAN'S METHOD—THE TRADITIONAL APPROACH

. INTRODUCTION The nine theorems in Table | summarize the traditional ap-

N IMPORTANT topic of linear control systems is the in-Proach presented by Evans. By way of demonstration, a problem
vestigation of the trajectories of the roots of the charactefiscussed in Kuo [4] is presented.
istic equation. Given such an equation, whhas a variable, ~Example 1: Considering#(s) = K/s(s+1) andH(s) = 1,
an engineer wanting to see the locus might pick a value fite characteristic equatiqn + G(s)H(s) = 0) becomes
K, then find and plot the roots. This process can be repeated,
for different values off’, until the desired locus is available s(s+1) +K =0. @
for viewing. !n general, thi§ was not a viable option when thﬁrom Theorem 1, in Table |, whel§ = 0, the two roots of the
root locus principles were first introduced by Evans [1], [2]. Hig
work enabled the engineer to bypass such a cumbersome pr
dure and quickly obtain a sketch of the root locus. The Eva
principles are still useful for that purpose.
Evans’ root loci rules are reviewed in order to demonstrate 14+ G(s)H(s) =14 (K/(s(s+1))) =0, (2)
construction of the root loci for the characteristic equation of
typical feedback control system as shown in Fig. 1. The charac-
teristic equation is obtained by settig- G(s)H(s) = 0. The G(s)H(s) = K/ (s(s +1)). ©)
rules for actually cgnstructlng the loci are summarized by Kuo Given (1) itis apparent from Theorem 2, in Table I, that when
[4] and presented in Table I. .
Engineers readily construct the system’s root loci by usi & equals-oo or-+oo thens must equabo or —oo, respectively.
nIgnus, the system poles are located-at: and+oc.

the theorems developed by Evans; however, the method doels—‘rom Theorem 3, the order of the polynomial in (1) is two:
not provide an analytical technique for determining the requir?lq ’ '

gains. By following the techniques of Dickson [3], equations ars}ve(z)refore the number of branches of the root loci (RL) is also
developed that can lead to a different understanding of how ttnel_'rfe RL plotis determined as the system giiis varied from
system behaves. The;e equations can be used to set the ValBetcc))oo. The complimentary root loci (CRL) plot is determined
gain to meet the requirements for the system and also provide o ; Do

. . . as'the gain is varied from 0 teco. The combination of the RL
algebraic expressions for the loci.

and the CRL make up the total or complete root loci.

The first goal of this paper is to review the Evans root locus
method. Then the second goal is to introduce the Dickson tech—From Theorem 5, the angles of the asymptotes for the RL

. ) . grtion are at 99 and 270. The CRL angles are calculated to
nigue and show how it can be utilized as a supplemental tool £of
. . ) . be O and 180.
constructing the desired loci. Also applications where the gain

uation are = 0 ands = —1. These two points are the poles
iown in Fig. 2.
NS’ Erom the given information

From Theorem 6, the intersection of the asymptotes is deter-

_ _ . mined to bes; = —1/2.
Manuscript received June 29, 1998; revised June 21, 2000. Theorem 7 indicates that the real axis between the two poles
The authors are with Washington State University at Tri-Cities, Richland, WA . .
09352 USA. is part of the RL plot and the remainder of the real axis belongs
Publisher Item Identifier S 0018-9359(01)03862-6. to the CRL plot.
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TABLE |
PROPERTIES OF THECOMPLETE ROOT Locl [4]

Theorem 1.

Theorem 2.

Theorem 3.

Theorem 4.

Theorem 5.

Theorem 6.

Theorem 7.

Theorem 8.

Theorem 9.

The K = 0 points on the complete root locus are at the poles of G(s)H(s).

The K = +/- o points on the complete root loci are at the zeros of
G(s)H(s).

The number of branches of the root loci is equal to the order of the
polynomial.

The complete root loci are symmetrical with respect to the real axis of the
s-plane. In general, the loci are symmetrical with respect to the axes of
symmetry of the pole-zero configuration of G(s)H(s).

For large values of s, the RL (K > 0) are asymptotic with angles
given by

Bk=02K+ )x n#m

n-m

whereK=0,1,2,.. ., In-m | - 1; n and m are the number
of finite poles and zeros of G(s)H(s), respectively.
For the CRL (K < 0), the angles of the asymptotes are

6k= _2Km n#*m
In-m |

where K=0,1,2, . .. |n-m [-1.

(a).  The intersect of the 2 In-m | asymptotes of the complex root loci
lies on the real axis of the s-plane.
(b).  The intersect of the asymptotes is given by

o = Z finite poles of G(s)H(s) - X finite zeros of G(s)H(s)

n-m

where n is the number of finite poles of G(s)H(s), and m is the number of
finite zeros of G(s)H(s).

The entire real axis of the s-plane is occupied by the complete root loci;
i.e., either the RL or CRL.

A. RL: On a given section of the real axis, RL are found in the section
only if the total number of poles and zeros of G(s)H(s) to the right of the
section is odd.

B. CRL: On a give section of the real axis, CRL are found in the section
only if the total number of real poles and zeros of G(s)H(s) to the right of
the section is even.

Complex poles and zeros of G(s)H(s) do not affect the distribution of
the root loci on the real axis.

The breakaway points on the complete root loci of 1 + KG(s)H(s) = 0 must
satisfy

dG(s)H(s) =0
ds

The intersection of ® and K at the crossing points of the root loci
(-0 <K < o) on the imaginary axis of the s-plane may be determined by
use of the Routh-Hurwitz criterion.

177
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Fig. 2. Pole zero plot of Example 1. Fig. 3. Root loci plot of Example 1.

To find the breakaway points on the complete oot loci, Th(l;_or this case, the root locus conditions are established by re-

orem 8 is applied. Taking the derivative 6 s)H (s) with re- quining
spect tos, the following is observed: Re[F(s)]=-1 and Im[F(s)]=0
dG(s)H(s) =~ —2s—1 which, fors = o + jw, can be written as follows:
d Cost42s3 4520 ,
or oo TE Re[F(o +jw)] = -1 (5)
—2s—1=0. (4) and

Im [F(o + jw)] =0. (6)
The root of (4) is ats = —0.5 which indicates that the break- o _ _ )
away point and the intersection of the asymptotes are identidd)is is the contribution of Dickson [3]. Equation (5) is denoted
for this system. To determine the system gain at the breakawh§ real condition and (6) the imaginary condition.
point, s = —0.5 is inserted into Equation (1) which yields Referring to Example 1
K = 0.25. 2
Applying the Routh—Hurwitz criterion as suggested in The- Clo)/Rls) =K[(s" + s+ K) = K/(F(s) +1)  (7)
orem 9, it is found thaf< > 0 is required to maintain stability. ©"
A negative system gain will cause the roots to cross into the F(s)=s"+s+K —1, (8)
right-half plane, thus causing instability. and
With the results from the nine Theorems, the root loci for SN PRy P _
the system can be constructed. Plots of the loci are displayed Flotjew) : (Z +JC;) ot jw) + K L
in Fig. 3 for RL and Fig. 4 for CRL. =0" —wi o+ K —1+jw(l+20). (9)
The Imaginary Condition applied to (9) results in the following:
lll. THE DICKSON METHOD

) o ) w(l+20)=0. (20)
Using Evan’s method, the characteristic equation,
1 4+ G(s)H(s) = 0, is set equal to zero using the fol-This producess = 0 or o = —1/2. Plotting this outcome
lowing conditions: reveals the complete root loci of the system. Notice ¢hagual
to zero indicates that part of the RL and part of the CRL locus
|G(s)H(s)|=1 and /G(s)H(s)= 180°. encompasses the axis (this is the situation for all systems).

The other result from (10fy = —1/2), indicates that the loci
The system shown in Fig. 1 is to be considered. If the systesocupy the line one-half a unit to the left of taeaxis. The
transfer function(C'(s)/R(s) = G(s)H(s)/(1 + G(s)H(s)), results can be seen in Fig. 3.

is simplified to a ratio of two polynomials, i.e., Examining Fig. 3, the RL, from the Evans approach, it is
known that the poles are located at (0,0) and ,0) when the
C(s)/R(s) = b(s)/a(s), system gairnk = 0. The loci are bound between the two poles

) o ] and the value = —1/2 as K varies from 0 tox. Fig. 4, indi-
thep the polynomial closed-loop characteristic equation can p&qs that the CRL occupies the remainder of the real axis.
defined as Applying the real condition to (9)

a(s)=F(s)+1=0. K=u—-0o*—0. (11)
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) Root Locus real axis forw = 0, or the plot will be on the liner = —1/2
for values ofv other than zero. The analytical results illustrated
L] SE—— ~ by (10) are duplicated by developing the root locus plot. Yet,
when using both (10) and (11) the designer has more options to
1 ‘ ] consider than are available when using the root locus rules of
05 | Evans.
2 ’ Example 2: Consider another system discussed by Kuo [4]
< 0 and Ogata [5], where
©
£
" 05 G(s)=K/(s(s+1)(s+2)) and H(s)=1. (12)
A The closed-loop transfer function can be written as
15 C(s)/R(s) =K/(s* 4+ 3s* + 25+ K)
, | ; =K/(s*+3s°+2s+ K —1+1)
T2 s -1 05 0 05 1 15 2 _
Real Axis _K/ (F(S) * 1)
where
Fig. 4. Complimentary root locus plot of Example 1. F(s) = (33 +352 425+ K — 1). (13)
05 Pole-Zero Map Insertings = o + jw yields
0.4 x K=04220 1 F(o+jw)=(0+jw)*+3(0 + jw)* +2(c + jw)+ K — 1.
0.3f 1 (14)
0-2r ] Expanding terms of (14) into real and imaginary parts results in
oAt .
£ F(o+ jw) =0°-30w? +30% —3w? + 20 + K — 1
g ° + 3jwo? — jud + 6jow + 2w. (15)
= 04t .
ozl | Applying the imaginary condition, the following is obtained
e from (15):
-0.3r b
oal | w(30? —w? +60+2)=0. (16)
05, o5 5 o5 Once againv = 0 is a solution (the loci will cover the axis).
’ Real Axis ’ And from the factor in parenthesis in (16), the user can obtain
Fig. 5. Pole zero plot of Example 1 with system géin= 0.4229. 30% + 60 +2 =w? a7)
or
In Equation (11), it will be noticed that the system gain can be 3o +1)? — 1 =u?

determined from the values efandw. Thus the necessary gain, "
K, can be calculated, to place the roots where desired on fle ) ) )
loci. If a system pole is to be located at the poirf)(5, 0.4158), (c+1)7/(1//3)" —w” =1. (18)

inserting these values into (11) will produce a system gam%@uaﬁon (18) is in the form of a hyperbola centered-at ().

is is the root loci equation for the system; the plots can be
seen in Figs. 6 and 7. Fig. 6 is the RL plot while Fig. 7 shows
trée CRL plot.

PeErom the real condition, applied to (15)

0.4229. The pole zero plot of the system with a gain of 0.42
is illustrated in Fig. 5. One pole is located at(.5, j0.4158),
while the other is at the point(0.5,—;0.4158). So, the system
poles can be placed on the root locus by determining the pro
system gain from (11).

Equations (10) and (11) are derived using Dickson’s tech- K = -6 +30w? — 362 + 3w? — 20. (19)
nigue to obtain an imaginary and a real condition. Evan’s
approach evolves from settirg) s) H(s) = —1. Both methods We now have a system equation in terms of gaiandw, and

(Evans and Dickson) determine the proper root locus. Tlean once again place the poles according to predetermined value
Dickson approach also exploits a calculation for the d&f) for o andw. The breakaway points (BPs) can also be determined
to place the system poles at the desired operating point. ~ for the RL and CRL plots. Setting = 0 in (18) produces

The implementation of the root locus method could involvegp; = —0.4226, ogpe = —1.577. By inserting these values
picking K, then finding and plotting the roots of the characteiinto (19), the gain of the system at these points is determined.
istic equation for the system &Svaries. Equation (10) indicatesAt the point 0.4226, 0), the system gainiSgp1 = 0.3849.
that if this is completed for all{, then the plot will be on the Since the gain is positive, this point corresponds to the RL plot.
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4 Root Locus (19) to be 1.003 70. Other operating points may be implemented
' ' using the same technique.
3l | Example 3: For this exampl&?(s) = (K(s+2))/(s*+2s+

3) andH(s) = 1. The closed-loop transfer function is
C(s)/R(s) = (K(s+2)) /(s> + (K +2)s +2K + 3) .

il // ] (20)
ﬁ Rearranging the terms of (20)
g ° C(s)/R(s) = (K(s+2))/ (s + (K +2)s+ 2K + 2+ 1)
T \ . = (K(s+2))/ (F(s) +1)

whereF(s) = s> + (K +2)s + 2K + 2. Insertings = o + jw
and reducing yields

Fo+jw) = 0?—w? +H(K+2)o+ (2K +1)+2jwotjw(K+2).

. . . (21)
4 1
-4 3 -2 -1 0 1 2 Applying the imaginary condition to (21)
Real Axis
2wo+w(K +2)=0 (22)
Fig. 6. Root locus plot of example 2.
where once agaiw is equal to zero or
Root Locus K+2+20=0. (23)
4 . 1 : :
Solving foro in (23) produces
il | o=(-K/2)—1=—[(K+2)/2]. (24)
2r 1 Applying the real condition to (21)
1t : 07— W+ (K+2)0 +2K +2=-1
;% o or
g o® + (K +2)o + [(K +2)/2)* + 2K + 2
b ~ (e +2)/2F — o = -1
2k i or
[0+ (K 42)/2]*> + 2K +2
N 7 —[(K +2)/2 - w? = -1
4 1 : L 1 or
-4 3 -2 -1 0 1 2 9
Real Axis o+ (K+2)/2°+K+2+K+2
~(K+2)/2P —w?=1. (25)

Fig. 7. Complimentary root locus plot of example 2.
From before

At the point (-1.577, 0) on the CRL plot, the system gain is o=—((K+2)/2)
Kpps = —0.3849. or
The critical values o can be found from the application of

Routh’s rule (i.e.f < K < 6 for stability). An examination of
the characteristic equation shows tlatmust be greater than Inserting this into (25) and completing the square results in
zero, since all the coefficients must be positive; setfirg= 0 2 2
andoc = 0in (19), returns the value for the critical frequency (0+2)7+w" =3 (26)
of wc = 0. The valuesKc = 6 andwc = 0, /2, are also This is an equation of a circle centeredrat —2 andw = 0
found from (17) and (19) by setting = 0. with a radius of,/3 and is the system equation that describes the
Once again, by developing the system equations usiRd. The RL plot is shown in Fig. 8, and the CRL plot in Fig. 9.
Dickson’s technique, the authors are able to determine théwith (25) and (26), the breakaway points and the gain of the
plot of the complete root loci. They are also able to determirsystem at these points can be determined. Insegtieg0 into
other important system parameters at points of interest on {26) produces the breakaway poiats= —0.268 and —3.73.
plot. This determination can be illustrated by calculating aft the breakaway pointt = —0.268, K is determined to be
operating point such that the second order damping ré}is( —1.464 by examining (24). When = —3.73, K is found to be
equal to one-half it = 303. Then from Equation (17) the 5.46.
operating point is located at, = —1/3 andwy = 0.57735 The critical values oK can be found from the application of
while the gain at the operating poink), is calculated from Routh’s rule (i.e.2K + 3 > 0 and K > —3/2 for stability).

—20=K + 2.
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Fig. 8. Root loci plot of example 3. Fig. 10. Root loci plot of example 4.
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Fig. 9. Complimentary root loci plot of example 3. Fig. 11. Complimentary root loci of example 4.

An examination of the characteristic equation shows that the&ed the imaginary part is found as
conditions are necessary to keep the coefficients positive. The
critical value of K’ can also be found by evaluating the real connl”

dition, knowing thatc = w = 0 at the critical point. If the . . (_29) )
operating point is to be located with a damping ratio equal to Eduations (28) and (29) represent higher order relationships

one-half, then this is achieved with a positive feedback gain than we have encountered previously; reduction into identifiable
K, = -1, 0, = —1, andw, = 0.8660. geometric curves may not be possible. The root locus plots, RL

Example 4: A higher order example by Ogata is examinedp sShown in Fig. 10 and CRL in Fig. 11, readily show the gen_eral _
[5] where: shape anq _the asym_ptotes for these curves. The_ rea_l and imagi-
nary conditions applied to the above equations will still provide
G(s) = K/ (s(s+1)(s+4s+13)) and H(s)=1 crucial information needed for analysis of the system and also
for establishing the gairk.

(0 + jw)] = w(do® + 1502 + 340 + 13 — dw?o — 5w?).

such that Applying the imaginary condition to (29)
C(s)/R(s) = K/(s* + 55° + 17 + 13s + K).  (27) W(40° + 1502 + 340 + 13 — doo — 50?) =0 (30)
For this transfer function, the real partito +;jw) is calculated \yhere itis noted that = 0 is a solution of the total root locus as
to be expected from the previous examples, and the breakaway point

ReF (0 + jw) =o* + 50% 4+ 1702 + 130 — 6w?0? can be found from the enclosed expression, witk 0, i.e.,

—15w%0 — 17> +w*+ K —1 (28) 403 + 1502 4+ 340 + 13 = 0.
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Noting that the roots of the above equation are-at6418 + o Root Locus
72.067 and at—0.4664, the breakaway point is recognized to be N
atogp = —0.4664. Knowing the value ot at the breakaway 8 T

point, the value of the gain, at that point is easily calculate g4l i
from applying the real condition to (28), and then solving fo
K = KBP, Jg = oBpp, andw = 0.

The real condition requires that w 2F p .
2 .

o +50% +170% +130 — 6w?o? — 1500 — 17w +w*+K =0 5 © 1

@y £, U |

and witho = —0.4664 andw = 0, Kgp = 2.8252 from the
above equation. 4

The imaginary condition, (30), was utilized to determineth _
breakaway point with omega set to zero; it also will provide th
critical frequency when sigma is zero, i.e.,

. -10 « L i L i i L L
5w? =13 = w, = £71.6125. 0 8 6 4 2 0 2 4 6 8
Real Axis

The real condition, (31), provided the gain at the known break- _
away point,ozp. It also will provide the gaink., at the point Fig- 12. Root loci plot of example 5.
of instability when sigma is zero and = w., i.e.,

Root Locus
K, = —w* 4+ 170? = 37.44. 10 '

Application of the real and imaginary conditions allowed im 8r ]
portant points of the root locus plots to be determined. The 6h i
equations can also help establish the operating peintand
a,,and the associated gaifd, . By selecting a suitable damping i 1
factor, such ag = 1/2, thenwy /o, = —+/3, and elimination ,, 2~ 1
of wo from (30) results are found in the following relation: i ol o\‘

—802 + 340, +13=0 E A { |

with solutions forr, as 2.2312;-1.8341, or —0.3971. Since the 4L 1 i
value forg, is expected to be less than the breakaway point

—0.4664, theno, = —0.3971 is chosen as the desired value an o i
wo Is calculated to be 0.6878 from the relatiog/o, = —/3. -8f ‘ .
Finally, K, is calculated to be 8.2179 using the above values , ; 1

(31). -10 -5 0 5 10

Real Axis

This example illustrates the application of Dickson’s tech-
nique to a higher order problem, one where the root locus cowg 13, complimentary root loci plot of example 5.
not be defined by simple geometric relations. Yet, the funda-
mental equations established through application of the real and . .
the imaginary conditions are still useful in finding the importan 0'keep track of these_terms, th_e equa_t|0ns used to develop this
factors required in the design and analysis of the system. Ex&8 mple were symbphcally de_nved using Mathcad.
values were found for the points that breakaway from the real he RL pIot.for _th|s system is shown in Fig. 12 and the CRL
axis, the critical values for oscillation, and the required syste‘%o'[ is shown in Fig. 13. Ogata [5] analyses the root locus plot

gain to achieve the desired operating point. Only algebraic eq a:[hIS system using MATLAB; MATLAB was also usedto gen

. : s . erate the root locus plots for this work.

tions were involved and the most difficult mathematical opera- ) o . .
Knowing the critical values ofi, the complexity of this

tion performed was finding roots for these equations. The te hl- her order svstem can be observed. As the qain increases
nique is a valuable compliment to classical root locus analys(%g y ' 9 k

Example 5: The final example involves a fifth-order system e_syster_n IS stgple.untll the value approaoh§§.6, where a .
as defined by (32). region of instability is reached. The system is unstable while

the gain is between 15.6 and 67.5. It is again observed to be

G(s) =K(s?+2s+4)/s(s +4)(s +6)(s* + 1.4s + 1) stable while the gain is between 67.5 and 163.5, and finally it
and is unstable when the gain is over the 163.5 value. However,

H(s)=1 (32) in the range wherd( is anywhere above 15, the system is so

) reactive that operation in the vicinity would not be possible;

Increasing the number of zeros@{ s) increases the complexity that is, the dominant poles are either in the right half plane or
of the problem. Since only algebraic operations are requireddo close to the imaginary axis that the damping factor would be
complete an analysis using Dickson’s technique, higher ordaracceptably small. Thus, the practical rangeKois greater
systems utilize the same procedures simply using more terrtign zero, but less than 15.
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The transfer function for the system defined above can bethe development of the standard root locus, and the second is

written as associated with the complementary root locus.
After the breakaway points have been calculated, the next task
C(s)/R(s) = K(s* +2s +4) is to calculate the critical values affecting stability. The gain,
/(5% + 11.4s* 4 395> + (43.6 + K)s* K¢, necessary to drive the system poles to the imaginary axis
+ (24 + 2K)s + 4K). (33) san important parameter as well as the critical frequengy,

Naturally, the real part of the pole location is zero at these points.

Following the previous development, the real and imaginahhe first step is to force omega to the point of instability by
parts of F(o 4 jw) are calculated, and the real and imaginar§etting sigma equal to zero in the defining equations. From (34)
conditions are applied. From the real condition with o = 0, (41) is derived as

, 4 2 2y

+ W (50w? — 1170 — 68.402 — 100> — 43.6 + 11.4w?)  Likewise (42) is derived from (35) with = 0, where

+E(o" ' +20+4) =0. (34) Wt — 390 + 244 2K = 0. (42)
Applying the imaginary condition another equation is derivetihe above two equations may be combined to elimidgat&his
as is a straightforward algebraic manipulation which results in

w[5o* +45.60° + 11707 + 87.20 + 24 w8 — 20.2w* + 92.8w% — 96 = 0. (43)

+wi(w® =39 - 4560 — 100°) + K(2+20)] =0. (35) The roots of (43) are+;1.21303, =+;j2.15090, and
) +43.75528, which identify the critical frequencies that
It can be observed from the above equation, the expected re I8 labeledwe:, wea, and wes, respectively. Given the
thatw = 0, or the real axis, is a solution for the entire rOOtlocu%ritical frequencies, the associated gains can be calculated

The bcriear\]kawayl poigts on the freal axi;uhmay b,e fo‘;nd from)m (41) or (42); the result of this calculation shows that
(34), and the enclosed portion of (35) with= 0, i.e., from  pr " 45 61062, K¢, = 67.51260, andKes = 163.556 77.

(34) The values for these gains can be verified using Routh’s rule,
and the values of the breakaway points can be found using a
derivative of the characteristic equation. The more traditional
and from (35) ways _require at least as much effo_rt_to appl_y as using Diqkson's
technique, and they lack the precision available for placing the

50* +45.60° +1170% +87.20 + 24+ K(2+20) = 0. (37) System operating point.

00 +11.40* +390°4-43.60% + 240 + K (02 +20+4) = 0 (36)

Solution of the above two equations will yield the breakaway IV. CONCLUSION
points,o g p, and the gainK g p, required to place the system
poles at those breakaway points. Equation (36) may be writtg
as

The Dickson technique is useful in allowing the designer to
Ctermine the gain required to place the systems poles and zeros
at some desired location. The breakaway points and the value
“K = (0 + 11.40™ + 390° + 43.602 + 240) /(6% + 20 + 4). of gain at each point can pe found by find?ng the conditions that

(38) exist whenw = 0. The critical values of gain and frequency, for
stability, can also be found by evaluating the equations-at0.
For higher order systems, the derived equations become more

—K = (50*+45.60° 4+ 1170% +87.20 +24) /(2+20). (39) complicated and more difficult to visualize. However, the equa-

tions are still valid, especially if two equations are derived (one
Eliminating — K from (38) and (39) results in a single polynothatis a function of sigma and omega, and one that is a function
mial equation. of the gain as well as sigma or omega or both). They are in-
The roots of this equation will render the breakaway pointeénded to be used in conjunction with a computer program that
of the root locus plot from the real axis. The result of this elimgenerates root locus plots and can be valuable tools to increase
ination is shown below as (40) understanding the root loci of a system.

Likewise, (37) may be solved for K, i.e.,

30°4+30.80°+127.40* +338.40°+531.202+348.80+96 = 0 REFERENCES

) (40) [1] W.R. Evans, “Graphical analysis of control systen&IEE Trans. Part
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—0.5000 £ 50.3335. The real roots show the location of the [21 — “Colntgg Sys“ég‘ gg”thgesés by root locus method|EE Trans.
. .. " Part I, vol. 69, pp. 66-69, 1950.
breakaway points. ¥-2.35567 is identified assg 1, then the [3] L. E. Dickson,New First Course in the Theory of EquationsNew

system gain necessary to place roots at that locatiGfy; = York: Wiley, 1939, pp. 158-160.

9.486 78, can be calculated from Equations (38) or (39)_ Like- [4] B. Kuo, Automatic Control Systems Englewood Cliffs, NJ: Prentice-
Hall, 1991, pp. 26, 419-20, 423, 427-428.

wise if —5.11079 is identified asypp», the related gain value 5 k. ogataModern Control Engineeringrd ed.  Englewood Cliffs, NJ:
is Kgpy = —5.06492. The first set of values is encountered Prentice Hall, 1997, p. 321, 327, 375, 339, 359.
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